首先还是先导入必要的包,代码如下:
1 | import scipy.io as sio |
/usr/local/lib/python3.5/dist-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
然后导入预训练好的vgg16网络模型,加载到网络里,并准备好所有图像,准备构建图像数据库,代码如下:
1 | sess = tf.Session() |
npy file loaded
build model started
build model finished: 0s
再接着就是将图像加载进预训练的vgg16网络里,这里使用fc7层的特征作为特征,其是大小为4096的向量,遍历所有图像,将各个图像的特征逐行保存如feature.npy文件里,代码如下:
1 | f = open('label.txt', 'w') |
然后就是加载测试图片,获得测试图片特征的代码如下所示:
1 | def extract_feature(path): |
首先测试一张图的评价指标,这里使用了airplanes/image_0001.jpg,图片展示如下:
1 | plt.figure() |
然后获得这张图的特征,并和前面已经获得的图像库的特征进行匹配,获得最近的十张图,结果如下:
1 | start = int(round(time.time()* 1000)) |
/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `imread` is deprecated!
`imread` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``imageio.imread`` instead.
/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:3: DeprecationWarning: `imresize` is deprecated!
`imresize` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``skimage.transform.resize`` instead.
This is separate from the ipykernel package so we can avoid doing imports until
消耗的时间是816 ms
距离最近的十张图距离是 [[ 0. 31118.32060277 32061.30867895 33426.1640262
33756.59609599 33955.5871336 34147.39183701 34280.35701924
34424.74113314 34482.05957456]]
距离最近的十张图的索引是 [[ 51 66 83 1976 1855 57 1764 1897 1768 97]]
获得其中最接近的三张图的地址,展现这些图的图片,如下所示:
1 | theline1=linecache.getline("label.txt",int(ind[0][0])) |
dataset/airplanes/image_0001.jpg
dataset/airplanes/image_0016.jpg
dataset/airplanes/image_0033.jpg
从上面可以看出,展示出的图片和测试图片类别完全一致,其中最接近测试图片的图和测试图片一模一样。
测试一张图片的P-K,R-K,F-K和MRR-K指标
还是以刚才那张图为例,这里先以k=10为例,测试其这四个指标,如下所示:
1 | def Get_score(path,ind): |
precision score 0.5
Recall score 0.1
F1 score 0.16666666666666666
MRR score 0.42000000000000004
可以看出,precision的准确率为百分之50,recall率为百分之10,F1分数为0.166,MRR score为0.42
测试所有图片的P-K,R-K,F-K和MRR-K指标
这里要测试2000张图的这四个指标,先测k=10使,各个类别的这四个指标,代码如下:
1 | def evaluate(num): |
/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `imread` is deprecated!
`imread` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``imageio.imread`` instead.
/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:3: DeprecationWarning: `imresize` is deprecated!
`imresize` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``skimage.transform.resize`` instead.
This is separate from the ipykernel package so we can avoid doing imports until
类别是: accordion Precision是 0.9119999999999996 Recall是 0.1824 F1是 0.3040000000000002 MRR是 0.31084929453262794
类别是: airplanes Precision是 0.7879999999999999 Recall是 0.15759999999999996 F1是 0.2626666666666666 MRR是 0.3427124842529605
类别是: bass Precision是 0.49000000000000005 Recall是 0.09800000000000003 F1是 0.16333333333333333 MRR是 0.4784389928193498
类别是: bonsai Precision是 0.632 Recall是 0.12639999999999998 F1是 0.21066666666666667 MRR是 0.4131869457042076
类别是: brain Precision是 0.748 Recall是 0.14960000000000007 F1是 0.24933333333333332 MRR是 0.3603971844293272
类别是: buddha Precision是 0.6760000000000003 Recall是 0.1352 F1是 0.2253333333333333 MRR是 0.4248558673469389
类别是: butterfly Precision是 0.5000000000000001 Recall是 0.1 F1是 0.16666666666666663 MRR是 0.5168516502897456
类别是: camera Precision是 0.862 Recall是 0.17240000000000003 F1是 0.28733333333333344 MRR是 0.3502130133534896
类别是: car_side Precision是 0.996 Recall是 0.19919999999999993 F1是 0.33200000000000024 MRR是 0.2917294532627866
类别是: cellphone Precision是 0.8819999999999995 Recall是 0.17639999999999997 F1是 0.29400000000000026 MRR是 0.31348964474678753
类别是: chair Precision是 0.618 Recall是 0.12359999999999999 F1是 0.20600000000000002 MRR是 0.4246199987402368
类别是: chandelier Precision是 0.5499999999999997 Recall是 0.11 F1是 0.18333333333333332 MRR是 0.4211596434870244
类别是: cougar_face Precision是 0.8099999999999998 Recall是 0.16200000000000003 F1是 0.27000000000000013 MRR是 0.3646421296296296
类别是: crab Precision是 0.446 Recall是 0.08920000000000002 F1是 0.14866666666666667 MRR是 0.4940006456286218
类别是: crayfish Precision是 0.4620000000000001 Recall是 0.0924 F1是 0.154 MRR是 0.47644240677752564
类别是: crocodile Precision是 0.522 Recall是 0.1044 F1是 0.17400000000000002 MRR是 0.40280735071806495
类别是: crocodile_head Precision是 0.57 Recall是 0.114 F1是 0.19000000000000006 MRR是 0.3809484095490048
类别是: cup Precision是 0.738 Recall是 0.1476 F1是 0.24600000000000005 MRR是 0.3578660777273872
类别是: dalmatian Precision是 0.8879999999999997 Recall是 0.17759999999999998 F1是 0.29600000000000015 MRR是 0.3110384920634921
类别是: dollar_bill Precision是 0.9159999999999995 Recall是 0.18319999999999997 F1是 0.3053333333333336 MRR是 0.31037669753086417
类别是: dolphin Precision是 0.6400000000000001 Recall是 0.12799999999999997 F1是 0.2133333333333333 MRR是 0.4083196995464852
类别是: dragonfly Precision是 0.628 Recall是 0.12559999999999996 F1是 0.20933333333333334 MRR是 0.4042844135802469
类别是: electric_guitar Precision是 0.748 Recall是 0.14960000000000007 F1是 0.24933333333333338 MRR是 0.3705190570672712
类别是: elephant Precision是 0.6859999999999996 Recall是 0.13720000000000002 F1是 0.2286666666666666 MRR是 0.4180562578735197
类别是: emu Precision是 0.7700000000000001 Recall是 0.15400000000000003 F1是 0.25666666666666665 MRR是 0.3568952947845803
类别是: euphonium Precision是 0.848 Recall是 0.1696 F1是 0.2826666666666668 MRR是 0.3418799067775258
类别是: ewer Precision是 0.8559999999999997 Recall是 0.17120000000000005 F1是 0.28533333333333355 MRR是 0.3479175485008819
类别是: faces Precision是 0.9799999999999998 Recall是 0.19599999999999998 F1是 0.32666666666666694 MRR是 0.29173280423280423
类别是: ferry Precision是 0.8919999999999998 Recall是 0.17840000000000003 F1是 0.29733333333333356 MRR是 0.3101462144116906
类别是: flamingo Precision是 0.7120000000000001 Recall是 0.14240000000000003 F1是 0.23733333333333342 MRR是 0.38784880007558575
类别是: gramophone Precision是 0.5519999999999999 Recall是 0.11040000000000001 F1是 0.18399999999999989 MRR是 0.4415120622323005
类别是: grand_piano Precision是 0.8819999999999999 Recall是 0.17639999999999997 F1是 0.2940000000000002 MRR是 0.33017158289241627
类别是: hawksbill Precision是 0.814 Recall是 0.1628 F1是 0.2713333333333334 MRR是 0.3493394935752078
类别是: hedgehog Precision是 0.8639999999999997 Recall是 0.17280000000000004 F1是 0.2880000000000001 MRR是 0.3293413422776518
类别是: helicopter Precision是 0.6 Recall是 0.12000000000000002 F1是 0.19999999999999996 MRR是 0.3974647833207358
类别是: ibis Precision是 0.7920000000000001 Recall是 0.15840000000000004 F1是 0.264 MRR是 0.3453355190224237
类别是: joshua_tree Precision是 0.9199999999999997 Recall是 0.184 F1是 0.30666666666666687 MRR是 0.30409257054673733
类别是: kangaroo Precision是 0.834 Recall是 0.1668 F1是 0.2780000000000001 MRR是 0.3316776549508692
类别是: ketch Precision是 0.9139999999999996 Recall是 0.18279999999999996 F1是 0.30466666666666686 MRR是 0.31019097379692623
类别是: lamp Precision是 0.6719999999999997 Recall是 0.1344 F1是 0.22399999999999995 MRR是 0.4075556311413455
全部类别的指标: Precision是 0.7402499999999999 Recall是 0.14805000000000004 F1是 0.24675000000000002 MRR是 0.37327269982993194
总共花了1586
当k=20时,测试代码和结果如下所示:
1 | start = int(round(time.time())) |
/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `imread` is deprecated!
`imread` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``imageio.imread`` instead.
/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:3: DeprecationWarning: `imresize` is deprecated!
`imresize` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``skimage.transform.resize`` instead.
This is separate from the ipykernel package so we can avoid doing imports until
类别是: accordion Precision是 0.857 Recall是 0.3428 F1是 0.48971428571428577 MRR是 0.20539066307175557
类别是: airplanes Precision是 0.6599999999999998 Recall是 0.264 F1是 0.3771428571428572 MRR是 0.23312569236496805
类别是: bass Precision是 0.3520000000000001 Recall是 0.14079999999999995 F1是 0.20114285714285707 MRR是 0.3725550250665459
类别是: bonsai Precision是 0.509 Recall是 0.20359999999999992 F1是 0.290857142857143 MRR是 0.3002244396294538
类别是: brain Precision是 0.6759999999999999 Recall是 0.2704 F1是 0.3862857142857142 MRR是 0.254187180757293
类别是: buddha Precision是 0.576 Recall是 0.23039999999999997 F1是 0.3291428571428572 MRR是 0.2896625758002827
类别是: butterfly Precision是 0.3960000000000001 Recall是 0.15839999999999999 F1是 0.22628571428571423 MRR是 0.37848773777990524
类别是: camera Precision是 0.8119999999999998 Recall是 0.3248000000000002 F1是 0.46400000000000013 MRR是 0.23347394360475007
类别是: car_side Precision是 0.997 Recall是 0.39879999999999993 F1是 0.5697142857142863 MRR是 0.1792328247913529
类别是: cellphone Precision是 0.843 Recall是 0.3372000000000001 F1是 0.48171428571428593 MRR是 0.20429811849339785
类别是: chair Precision是 0.4710000000000003 Recall是 0.1884 F1是 0.26914285714285713 MRR是 0.33504755371157635
类别是: chandelier Precision是 0.4390000000000001 Recall是 0.17560000000000003 F1是 0.2508571428571427 MRR是 0.2868489698847877
类别是: cougar_face Precision是 0.7630000000000001 Recall是 0.3052 F1是 0.4360000000000001 MRR是 0.2412218469423665
类别是: crab Precision是 0.349 Recall是 0.13959999999999995 F1是 0.19942857142857143 MRR是 0.3480324817189515
类别是: crayfish Precision是 0.36800000000000005 Recall是 0.14719999999999997 F1是 0.2102857142857143 MRR是 0.33955418488231237
类别是: crocodile Precision是 0.42400000000000004 Recall是 0.1696 F1是 0.24228571428571433 MRR是 0.28930749379460363
类别是: crocodile_head Precision是 0.5259999999999999 Recall是 0.21039999999999992 F1是 0.30057142857142854 MRR是 0.2615118611954065
类别是: cup Precision是 0.6459999999999999 Recall是 0.2584 F1是 0.36914285714285705 MRR是 0.24596421538677773
类别是: dalmatian Precision是 0.8470000000000002 Recall是 0.3388000000000002 F1是 0.48400000000000026 MRR是 0.2047244990867052
类别是: dollar_bill Precision是 0.8670000000000004 Recall是 0.34680000000000016 F1是 0.4954285714285718 MRR是 0.1991986558251109
类别是: dolphin Precision是 0.5379999999999999 Recall是 0.21520000000000003 F1是 0.3074285714285714 MRR是 0.28793062262240343
类别是: dragonfly Precision是 0.5370000000000001 Recall是 0.21480000000000005 F1是 0.3068571428571429 MRR是 0.2896271859115977
类别是: electric_guitar Precision是 0.6270000000000001 Recall是 0.2508 F1是 0.3582857142857143 MRR是 0.24706146727997996
类别是: elephant Precision是 0.6129999999999999 Recall是 0.24520000000000003 F1是 0.3502857142857142 MRR是 0.31357805277960843
类别是: emu Precision是 0.66 Recall是 0.26400000000000007 F1是 0.37714285714285706 MRR是 0.2562631926574002
类别是: euphonium Precision是 0.7899999999999998 Recall是 0.316 F1是 0.4514285714285715 MRR是 0.23728301946965857
类别是: ewer Precision是 0.8059999999999998 Recall是 0.3224000000000001 F1是 0.4605714285714288 MRR是 0.22706734081527205
类别是: faces Precision是 0.9530000000000005 Recall是 0.3812000000000001 F1是 0.544571428571429 MRR是 0.18352354358387135
类别是: ferry Precision是 0.8269999999999998 Recall是 0.3308000000000002 F1是 0.47257142857142864 MRR是 0.2019892275742634
类别是: flamingo Precision是 0.6220000000000001 Recall是 0.24880000000000002 F1是 0.35542857142857137 MRR是 0.27999955089261086
类别是: gramophone Precision是 0.428 Recall是 0.17119999999999994 F1是 0.24457142857142852 MRR是 0.321210878485727
类别是: grand_piano Precision是 0.805 Recall是 0.32200000000000023 F1是 0.46000000000000013 MRR是 0.228530350482945
类别是: hawksbill Precision是 0.7440000000000001 Recall是 0.29760000000000014 F1是 0.4251428571428572 MRR是 0.23961314379373044
类别是: hedgehog Precision是 0.7769999999999999 Recall是 0.3108000000000001 F1是 0.444 MRR是 0.22917637257178725
类别是: helicopter Precision是 0.4809999999999999 Recall是 0.19240000000000002 F1是 0.2748571428571429 MRR是 0.26922481396817177
类别是: ibis Precision是 0.685 Recall是 0.2740000000000001 F1是 0.3914285714285714 MRR是 0.2492651484526271
类别是: joshua_tree Precision是 0.8970000000000001 Recall是 0.3588000000000002 F1是 0.5125714285714289 MRR是 0.1905144055309088
类别是: kangaroo Precision是 0.731 Recall是 0.2924000000000001 F1是 0.4177142857142858 MRR是 0.23588099861154674
类别是: ketch Precision是 0.86 Recall是 0.34400000000000014 F1是 0.4914285714285718 MRR是 0.2035065874260235
类别是: lamp Precision是 0.575 Recall是 0.22999999999999993 F1是 0.3285714285714286 MRR是 0.292364211133484
全部类别的指标: Precision是 0.6583500000000001 Recall是 0.2633400000000001 F1是 0.37620000000000015 MRR是 0.259641501945798
总共花了1606
当k=50时,测试代码和结果如下所示:
1 | start = int(round(time.time())) |
/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `imread` is deprecated!
`imread` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``imageio.imread`` instead.
/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:3: DeprecationWarning: `imresize` is deprecated!
`imresize` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``skimage.transform.resize`` instead.
This is separate from the ipykernel package so we can avoid doing imports until
类别是: accordion Precision是 0.6419999999999999 Recall是 0.6419999999999999 F1是 0.6419999999999999 MRR是 0.13524435187251646
类别是: airplanes Precision是 0.42760000000000015 Recall是 0.42760000000000015 F1是 0.42760000000000015 MRR是 0.15611472394371254
类别是: bass Precision是 0.22399999999999992 Recall是 0.22399999999999992 F1是 0.22399999999999987 MRR是 0.2459831025114453
类别是: bonsai Precision是 0.3396 Recall是 0.3396 F1是 0.3396 MRR是 0.16641227976837342
类别是: brain Precision是 0.43079999999999996 Recall是 0.43079999999999996 F1是 0.43079999999999996 MRR是 0.17243015347578314
类别是: buddha Precision是 0.36999999999999994 Recall是 0.36999999999999994 F1是 0.36999999999999994 MRR是 0.19101866884066498
类别是: butterfly Precision是 0.24959999999999996 Recall是 0.24959999999999996 F1是 0.24959999999999996 MRR是 0.2558937748144347
类别是: camera Precision是 0.6276 Recall是 0.6276 F1是 0.6275999999999999 MRR是 0.1525350277841781
类别是: car_side Precision是 0.9231999999999998 Recall是 0.9231999999999998 F1是 0.9231999999999998 MRR是 0.09586743969932714
类别是: cellphone Precision是 0.6244 Recall是 0.6244 F1是 0.6244 MRR是 0.12794734392911913
类别是: chair Precision是 0.28919999999999996 Recall是 0.28919999999999996 F1是 0.28919999999999996 MRR是 0.2598573776970831
类别是: chandelier Precision是 0.31000000000000005 Recall是 0.31000000000000005 F1是 0.31000000000000005 MRR是 0.1808264760517882
类别是: cougar_face Precision是 0.5480000000000002 Recall是 0.5480000000000002 F1是 0.5480000000000002 MRR是 0.16039140243647507
类别是: crab Precision是 0.23800000000000002 Recall是 0.23800000000000002 F1是 0.23800000000000002 MRR是 0.20398167167240952
类别是: crayfish Precision是 0.24239999999999998 Recall是 0.24239999999999998 F1是 0.24239999999999998 MRR是 0.21794387980394123
类别是: crocodile Precision是 0.31880000000000014 Recall是 0.31880000000000014 F1是 0.3188000000000001 MRR是 0.16377485897743327
类别是: crocodile_head Precision是 0.3824000000000001 Recall是 0.3824000000000001 F1是 0.3824000000000001 MRR是 0.15999989480834342
类别是: cup Precision是 0.4528000000000001 Recall是 0.4528000000000001 F1是 0.4528000000000001 MRR是 0.16832274718912343
类别是: dalmatian Precision是 0.6856000000000002 Recall是 0.6856000000000002 F1是 0.6856000000000002 MRR是 0.13038107788414918
类别是: dollar_bill Precision是 0.6992000000000002 Recall是 0.6992000000000002 F1是 0.6992000000000002 MRR是 0.1230311724451443
类别是: dolphin Precision是 0.3472000000000001 Recall是 0.3472000000000001 F1是 0.34720000000000006 MRR是 0.185102586671417
类别是: dragonfly Precision是 0.3636000000000001 Recall是 0.3636000000000001 F1是 0.3636000000000001 MRR是 0.18336640828208575
类别是: electric_guitar Precision是 0.4156 Recall是 0.4156 F1是 0.4156 MRR是 0.16112480696341586
类别是: elephant Precision是 0.4388 Recall是 0.4388 F1是 0.4388 MRR是 0.19226995610666886
类别是: emu Precision是 0.46280000000000016 Recall是 0.46280000000000016 F1是 0.46280000000000016 MRR是 0.1727423329572902
类别是: euphonium Precision是 0.5331999999999999 Recall是 0.5331999999999999 F1是 0.5331999999999999 MRR是 0.16508289859996736
类别是: ewer Precision是 0.6156 Recall是 0.6156 F1是 0.6156 MRR是 0.1484146198122631
类别是: faces Precision是 0.8291999999999997 Recall是 0.8291999999999997 F1是 0.8291999999999997 MRR是 0.1034398902906862
类别是: ferry Precision是 0.5984 Recall是 0.5984 F1是 0.5984 MRR是 0.13050126647346258
类别是: flamingo Precision是 0.4736000000000001 Recall是 0.4736000000000001 F1是 0.4736000000000001 MRR是 0.17999585678937785
类别是: gramophone Precision是 0.27079999999999993 Recall是 0.27079999999999993 F1是 0.27079999999999993 MRR是 0.21110128986305046
类别是: grand_piano Precision是 0.5628 Recall是 0.5628 F1是 0.5628 MRR是 0.16429422826486662
类别是: hawksbill Precision是 0.522 Recall是 0.522 F1是 0.522 MRR是 0.14423908077953893
类别是: hedgehog Precision是 0.568 Recall是 0.568 F1是 0.568 MRR是 0.15742682542564843
类别是: helicopter Precision是 0.33080000000000004 Recall是 0.33080000000000004 F1是 0.33080000000000004 MRR是 0.1642027888118308
类别是: ibis Precision是 0.4879999999999999 Recall是 0.4879999999999999 F1是 0.4879999999999999 MRR是 0.16840193197102116
类别是: joshua_tree Precision是 0.7495999999999999 Recall是 0.7495999999999999 F1是 0.7495999999999999 MRR是 0.10702191326474143
类别是: kangaroo Precision是 0.5000000000000001 Recall是 0.5000000000000001 F1是 0.5000000000000001 MRR是 0.16308041702731674
类别是: ketch Precision是 0.7024000000000001 Recall是 0.7024000000000001 F1是 0.7023999999999999 MRR是 0.12742134275609873
类别是: lamp Precision是 0.38799999999999996 Recall是 0.38799999999999996 F1是 0.38799999999999996 MRR是 0.2064639804390264
全部类别的指标: Precision是 0.4796400000000001 Recall是 0.4796400000000001 F1是 0.4796400000000001 MRR是 0.16759129617888052
总共花了1584
当k=100时,测试代码和结果如下所示:
1 | start = int(round(time.time())) |
/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `imread` is deprecated!
`imread` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``imageio.imread`` instead.
/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:3: DeprecationWarning: `imresize` is deprecated!
`imresize` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``skimage.transform.resize`` instead.
This is separate from the ipykernel package so we can avoid doing imports until
类别是: accordion Precision是 0.37520000000000003 Recall是 0.7504000000000001 F1是 0.5002666666666666 MRR是 0.1089526687599054
类别是: airplanes Precision是 0.28240000000000004 Recall是 0.5648000000000001 F1是 0.3765333333333333 MRR是 0.1169019750148541
类别是: bass Precision是 0.14980000000000004 Recall是 0.2996000000000001 F1是 0.1997333333333334 MRR是 0.17176894130050305
类别是: bonsai Precision是 0.2378 Recall是 0.4756 F1是 0.3170666666666667 MRR是 0.11599950521883272
类别是: brain Precision是 0.25460000000000005 Recall是 0.5092000000000001 F1是 0.3394666666666668 MRR是 0.13976041912502468
类别是: buddha Precision是 0.23559999999999998 Recall是 0.47119999999999995 F1是 0.3141333333333333 MRR是 0.14234849465205957
类别是: butterfly Precision是 0.1656 Recall是 0.3312 F1是 0.22080000000000005 MRR是 0.18328774522576705
类别是: camera Precision是 0.3538 Recall是 0.7076 F1是 0.47173333333333345 MRR是 0.13082315151269644
类别是: car_side Precision是 0.4807999999999996 Recall是 0.9615999999999992 F1是 0.6410666666666662 MRR是 0.09198318332532594
类别是: cellphone Precision是 0.3669999999999999 Recall是 0.7339999999999998 F1是 0.4893333333333334 MRR是 0.10767332455027613
类别是: chair Precision是 0.18839999999999993 Recall是 0.37679999999999986 F1是 0.25120000000000003 MRR是 0.17609480911920505
类别是: chandelier Precision是 0.20939999999999995 Recall是 0.4187999999999999 F1是 0.2792 MRR是 0.13734513592599634
类别是: cougar_face Precision是 0.30920000000000003 Recall是 0.6184000000000001 F1是 0.4122666666666666 MRR是 0.13185920156678382
类别是: crab Precision是 0.1702 Recall是 0.3404 F1是 0.22693333333333332 MRR是 0.13999293047235378
类别是: crayfish Precision是 0.1704 Recall是 0.3408 F1是 0.2272000000000001 MRR是 0.15203942791240327
类别是: crocodile Precision是 0.225 Recall是 0.45 F1是 0.3 MRR是 0.11640589232915156
类别是: crocodile_head Precision是 0.2584000000000001 Recall是 0.5168000000000001 F1是 0.34453333333333336 MRR是 0.11119901333165677
类别是: cup Precision是 0.2852 Recall是 0.5704 F1是 0.38026666666666675 MRR是 0.13574036756164565
类别是: dalmatian Precision是 0.37200000000000005 Recall是 0.7440000000000001 F1是 0.4959999999999999 MRR是 0.1171433385854654
类别是: dollar_bill Precision是 0.4028 Recall是 0.8056 F1是 0.5370666666666666 MRR是 0.10390731615749678
类别是: dolphin Precision是 0.22279999999999997 Recall是 0.44559999999999994 F1是 0.29706666666666676 MRR是 0.14018084092512578
类别是: dragonfly Precision是 0.23659999999999998 Recall是 0.47319999999999995 F1是 0.3154666666666667 MRR是 0.13990322726250679
类别是: electric_guitar Precision是 0.26719999999999994 Recall是 0.5343999999999999 F1是 0.35626666666666656 MRR是 0.12416552351690571
类别是: elephant Precision是 0.27119999999999994 Recall是 0.5423999999999999 F1是 0.36160000000000003 MRR是 0.14391679295668197
类别是: emu Precision是 0.294 Recall是 0.588 F1是 0.39199999999999996 MRR是 0.13093700660434973
类别是: euphonium Precision是 0.30000000000000004 Recall是 0.6000000000000001 F1是 0.4 MRR是 0.12798189953664224
类别是: ewer Precision是 0.36400000000000005 Recall是 0.7280000000000001 F1是 0.48533333333333323 MRR是 0.12132977227837438
类别是: faces Precision是 0.4406000000000001 Recall是 0.8812000000000002 F1是 0.5874666666666665 MRR是 0.09713941810197513
类别是: ferry Precision是 0.3617999999999999 Recall是 0.7235999999999998 F1是 0.48239999999999994 MRR是 0.10755851523534302
类别是: flamingo Precision是 0.3152 Recall是 0.6304 F1是 0.42026666666666673 MRR是 0.13850208527481236
类别是: gramophone Precision是 0.17759999999999998 Recall是 0.35519999999999996 F1是 0.23680000000000004 MRR是 0.15839726580505067
类别是: grand_piano Precision是 0.31919999999999993 Recall是 0.6383999999999999 F1是 0.4256000000000001 MRR是 0.132432426952128
类别是: hawksbill Precision是 0.3161999999999999 Recall是 0.6323999999999999 F1是 0.4216000000000001 MRR是 0.11732087662937214
类别是: hedgehog Precision是 0.3166 Recall是 0.6332 F1是 0.4221333333333336 MRR是 0.13394856501359767
类别是: helicopter Precision是 0.24340000000000003 Recall是 0.48680000000000007 F1是 0.32453333333333334 MRR是 0.11387951623132996
类别是: ibis Precision是 0.31920000000000004 Recall是 0.6384000000000001 F1是 0.4256 MRR是 0.12984272526796853
类别是: joshua_tree Precision是 0.44099999999999995 Recall是 0.8819999999999999 F1是 0.5880000000000003 MRR是 0.0920799595960934
类别是: kangaroo Precision是 0.30080000000000007 Recall是 0.6016000000000001 F1是 0.4010666666666666 MRR是 0.13307640433603413
类别是: ketch Precision是 0.3904000000000001 Recall是 0.7808000000000002 F1是 0.5205333333333333 MRR是 0.11346268784318259
类别是: lamp Precision是 0.24999999999999997 Recall是 0.49999999999999994 F1是 0.3333333333333334 MRR是 0.14451757985277888
全部类别的指标: Precision是 0.29103500000000004 Recall是 0.5820700000000001 F1是 0.3880466666666666 MRR是 0.1292949982716914
总共花了1573
结论
从上面的k=10,20,50,100的结果,可以得到以下一些结论:
1.随着K的增加,这2000张图整体的precision下降,recall是上升的,F1指标也是上升的,MRR指标是下降的。
2.各个类别的分数在上面的结果里已经列出,可以看出car_side的precision是最高的,其recall也是最高的,F1 score也是最高的,MRR最高的是butterfly
3.测试时间上,上述各个k的值最终结果都在1600s前后,可以说很慢了。